If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t^2+29t-5=0
a = 20; b = 29; c = -5;
Δ = b2-4ac
Δ = 292-4·20·(-5)
Δ = 1241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{1241}}{2*20}=\frac{-29-\sqrt{1241}}{40} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{1241}}{2*20}=\frac{-29+\sqrt{1241}}{40} $
| x2+3x=-37 | | 9(x-8)-5=-77 | | 6x-20=4x+14 | | (5+2)x10=(5x)+(2x10)=70 | | -4(4t^2+24t+27)=0 | | (b/9)+(1/4)=13 | | 28=y/5-8 | | 9x+7(2x)=60 | | (6x+4)=(9x-4) | | 18-1.5x=12 | | n-42-3(-11)+7=-5 | | -13x=2-(-11) | | -5(-6-2z)=5z | | n-42-3=7(-2-3) | | |4x+3|=–3x+7 | | 4p-1/3-2=-9 | | b=50+(20+6) | | 17x+6=-9x18 | | 4x+3=7−3x | | 9-2(x+5)=4x+3(x-9)3 | | -7-9=9x+3-8x | | x+.07x=24030 | | -10+7/4x=-38 | | n-42-3=7(-2-5) | | 9-2(x+5)=4x+3(x-9) | | 8(x-1)+2/3=2/3 | | 12-20a=132 | | n+(-18)-29=-72 | | x+x*1,5/2,5=320 | | x+18/24=36/12 | | 5+2m=3-m | | 4.8x^2+20x+60=0 |